VII. Probability
 (Part IV: Continuous Probability Distributions)

- Normal Distribution
- Other Continuous Distributions
- Overview: Discrete vs. Continuous
- The total area under the curve is one $\left(\int_{-\infty}^{\infty} f(x) \mathrm{dx}=1\right)$. The function $f(x)$ is called the probability density function.

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma}} \cdot e^{-\frac{1}{2}\left(\frac{(x-\mu)}{\sigma}\right)^{2}}
$$

- The curve is symmetric around μ (The area on each side of the mean equals 0.5 or 50\%).
- The tails of the curve extend indefinetely
- If a random variable \mathbf{X} follows a normal distribution with μ and σ, we write $X \sim N(\mu, \sigma)$. The parameters μ and σ determine the shape of the curve. The mean μ is responsible for the location and $\sigma(\sigma>0)$ the shape. The larger σ, the flatter and wider the curve.
- The highest point of $f(x)$ occurs at the mean value μ
- Most important distribution for continuous random variables
- We can determine the probability that a value is within a given interval [a, b]
- Probabilities can only be determined approximately (with tables, Software)

Normal Distribution (2/6) - Effects of μ and σ

Remember the notation $X \sim(\mu, \sigma)$

- $f_{1}(x) \ldots X \sim N(0,1)$
- $f_{4}(x) \ldots X \sim N(0,1)$
- $f_{2}(x) \ldots X \sim N(0.3,1)$
- $f_{5}(x) \ldots X \sim N(0,1.2)$
- $f_{3}(x) \ldots X \sim N(1,1)$
- $f_{6}(x) \ldots X \sim N(0,1.5)$

Normal Distribution (3/6): Using Excel

EXCEL-Functions

$$
\begin{array}{ll}
=\text { NORM.DIST }(\mathbf{x} ; \mu ; \sigma ; \mathbf{1}) & \text { Gives the probability } \mathbf{P}(\mathbf{X}<\mathbf{x}) \text { if } X \sim N(\mu, \sigma) \\
=\text { NORM.INV }(\mathbf{p r b} ; \mu ; \sigma) & \text { Gives the the value } \mathbf{x} \text { so that } \mathrm{P}(\mathrm{X}<\mathrm{x})=\operatorname{prb}
\end{array}
$$

Example: Using NORM.DIST

Problem

The results of a national survey showed that on average, adults sleep 6.9 hours per night Suppose that the standard deviation is 1 hour. Calculate the percentage of individuals who sleep.

- more than 8 hours.
- less than 5 hours.
- between 6 and 7 hours.

Solution

$\downarrow=1$ - NORM.DIST $(8 ; 6.9 ; 1 ; 1)=13.57 \%$

- =NORM.DIST(5;6.9;1;1) $=2.87 \%$
- =NORM.DIST($7 ; 6,9 ; 1 ; 1$)-NORM.DIST $(6 ; 6,9 ; 1 ; 1)=35.58 \%$

Normal Distribution (4/6): Using Tables

If a random variable X follows a normal distribution, $X \sim N(\mu, \sigma)$

$$
\begin{aligned}
& \text { The transformation } \\
& \qquad Z=\frac{x-\mu}{\sigma}
\end{aligned}
$$

leads to a standard normal distribution.
Now,

$$
Z \sim N(0,1)
$$

Tables for a standard normal distribution can be found in any textbook about introductory statistics or online as well as in formularies.

Normal Distribution (5/6): Examples

Example: Using NORM.INV

Problem

The IQ is normally distributed with mean of 100 and standard deviation of 15 .

1. What is the critical value that cuts off the lowest 10% of all IQ scores?
2. What is the critical value to belong to the best 1% of all IQ scores?
3. What is the critical value to belong to the best 25% of all IQ scores?

Round the values to the next integer.
Solution

1. $=\operatorname{NORM} . \operatorname{INV}(0,1 ; 100 ; 15)=\approx 81$ IQ-Points
2. $=\operatorname{NORM} \cdot \operatorname{INV}(0,99 ; 100 ; 15)=\approx 135$ IQ-Points
3. $=\operatorname{NORM} \cdot \operatorname{INV}(0,75 ; 100 ; 15)=\approx 110$ IQ-Points

Normal Distribution (6/6): Examples (continued)

Example 1

Problem Let X be a cont. random variable, $X \sim N(0,1)$. Find $P(x<0.2)$
$\%$ \%6 <9 uounjos

Example 2

Problem Let X be a cont. random variable, $X \sim N(100,15)$.

1. Find the probability that $x>110$
2. Find the probability that $x<95$

Example 3

Problem The amount that airlines spend on food per passenger is normally distributed with $\mu=4,50$ EUR and $\sigma=0,80$ EUR. What percent spend more than EUR 6,00?

Other Continuous Distributions (1/1)

In the list below you can find some continuous distributions. We will come accross those in bold print in our last lessons:

- χ^{2} distribution
- F-distribution
- t-distribution
- Uniform distribution
- ...

Overview: Discrete vs. Continuous (1/1)

Discrete

- Finite number of possible outcomes
- Assigns a probability to each possible outcome
- To find the probability that a value between a and boccurs, we can add the respective probabilities.

Continuous

- Infinite number of possible outcomes
- To find the probability that a value between a and boccurs, we can calculate the area under the curve of the corresponding density function.
- We can obtain the area under a density function $f(x)$ between the values a and b by by calculating $\int_{a}^{b} f(x) d x$.
- Usually those areas (=probabilities) can be found approximately only (using tables or software).

