III. Combinatorics

Permutations and Combinations

1/17

Permutations and Combinations (2/5)

Permutation with repetition

The number of permutations of n objects with n_1 identical objects of type 1, n_2 identical objects of type 2, \cdots , and n_k identical objects of type k is

$$\frac{n!}{n_1! \cdot n_2! \cdots n_k!}$$

Example: Permutation with repetition

Problem:

How many total arrangements of the letters in MISSISSIPPI are there?

Solution:

Solution	
Letter	Frequency
М	1
	4
S	4
P	2
total	11

Using the formula above, we get $\frac{11!}{1!\cdot 4!\cdot 4!\cdot 2!}=34650$ possible arrangements.

Permutations and Combinations 1/5

Combinatorics is an area of mathematics primarily concerned with counting. Understanding the basic ideas is crucial for understanding statistical concepts.

Permutation without repetition

Factorial of a number

$$n! = n \cdot (n-1) \cdot \cdot \cdot 2 \cdot 1$$

n! gives the possible arrangements of n distinguishable objects. Note that

$$n! = \prod_{i=1}^{n} i$$

Special cases: 1! = 1 and 0! = 1

Example: Permutation without repetition

Problem:

How many different ordered arrangements of the letters a, b, and c are possible? **Solution:**

There are $3! = 3 \cdot 2 \cdot 1 = 6$ possible arrangements.

7 2/17

Permutations and Combinations (3/5)

Binomial Coefficient

Binomial Coefficient

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Note that

The binomial coefficient tells us how many ways there are to choose k things out of larger set consisting of n things.

Some Theorems:

Theorem 1

 $\binom{n}{0} = 1$

Theorem 2 $\binom{n}{n} = 1$

Theorem 3 $\binom{n}{k} = \binom{n}{n-k}$

Theorem 3 is called the Symmetry Rule for Binomial Coefficients.

3/17 4/17

Permutations and Combinations (4/5): Example

Example: Selection problem

Problem:

How many teams of 4 people be chosen from a company that employs 20 people?

Solution:

There are $\binom{20}{4} = 4845$ ways.

Note

This is a special case of a permutation with 2 groups (selected vs. non-selected objects)

IV. Probability(Part I: Basic Concepts)

► Basic Probability with Examples

Permutations and Combinations (5/5): Examples

Example 1

Problem:

In how many ways can 5 people be seated on a sofa?

Solution: 120 ways

Example 2

Problem:

Five red books, two white books and three blue books are arranged in a shelf. If all the books of the same color are not distinguishable from each other, how many different arrangements are possible?

Solution: = 2520 arrangements

Example 3

A teacher selects six exam questions from a pool comprising 15 questions. How many different exams are possible (if the order of the questions is not important)?

Solution: = 5005 ways

5/17 6/17

Basic Probability with Examples 1/10

Probability is a measure of the likelihood of the occurrence of an event. The relative frequency definition of probability states that if an experiment is performed n times, and if event E occurs f times, then the probability of event E is given by the following formula:

Relative frequency definition

$$P(E) = \frac{f}{n}$$

Note that this is only true for **equally likely** outcomes. The **sample space** Ω of an experiment or random trial is the **set of all possible outcomes** or results of that experiment. An **event** is a subset of the sample space Ω . Note that Ω itself and the empty set $\{\}$ are also subsets of Ω .

Example: Relative Frequency Definition

An experiment consists of rolling one unbiased dice. The sample space for this experiment is $\Omega = \{1, 2, 3, 4, 5, 6\}$. Let **E** be the event *an even number occurs*. The event happens, if we get two or four or six $\{2, 4, 6\}$. Since the dice is unbiased (every outcome is equally likely) we get $P(E) = \frac{3}{6} = \frac{1}{2}$ or 50%.

7/17 8/17

Basic Probability with Examples 2/10

Range of values for probabilities

$$0 \le P(E) \le 1$$
 and $P(\Omega) = 1$

Example: Range of values

An experiment consists of rolling one unbiased dice. The sample space for this experiment is $\Omega = \{1, 2, 3, 4, 5, 6\}$. Now let us define two events:

- ▶ A the outcome of the experiment is 7
- ▶ B the outcome is an integer number

Now we calculate the probabilities: $P(A) = \frac{0}{6} = 0 = 0\%$ and $P(B) = \frac{6}{6} = 1 = 100\%$ Note that **A** is called the **impossible event** and **B** is called the **certain event**.

Be careful:

Note that an impossible event has zero probability but not all zero-probability events are impossible!

Basic Probability with Examples 3/10

Complementary event. To every event E there is a complementary event $\neg E$.

Rule for the complementary event (very helpful!)

$$P(E) + P(\neg E) = 1$$

Example: Finding the Probability for a Complementary Event

Approximately 3% of a population is diabetic. The probability that a randomly chosen citizen from that population is not diabetic is 0.97 or 97 %.

9/17

Basic Probability with Examples 4/10

Multiplication Rules for compound events (A and B occurs): independent events

Multiplication Rule for independent events

$$P(A \wedge B) = P(A) \cdot P(B)$$

Example: Finding the probability for A and B

Find the probability of rolling a six on a single 6-sided die, **and** then again rolling a six. Since the two experiments are **independent**, we get

$$P(\operatorname{six} \wedge \operatorname{six}) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

Basic Probability with Examples 5/10

Drawing a tree diagram. The best and easiest way to solve problems involving compound events is to use a tree diagram.

- ▶ Draw a tree with one branch for each possible outcome in one experiment.
- ▶ Write the probability of each branch on the branch and the outcome at the end of the branch.
- Extend the diagram for each rerun of the experiment.
- ▶ Multiply the probabilities of interest along the branches.
- ▶ Add the results that lead to the desired outcome.
- ▶ If this is done correctly, the final probabilities of **all** branches add up to 1.

Example:

Experiment: Flip a biased coin twice (probability for head=40%, probability for tail = 60%). Find the following probabilities:

- ► P(head and head) (Solution: 16%)
- P(at least once head) (Solution: 64%)
- ► P(two different results) (Solution: 48%)

Basic Probability with Examples 6/10

Multiplication Rules for compound events (A and B occurs): dependent events

Multiplication Rule for dependent events. Draw a tree diagram! Note that the probabilities change after each run of the experiment.

Example:

A box contains 5 red and 4 blue marbles. Two marbles are withdrawn randomly without replacement. Calculate the following probabilities:

► P(both are red) =?

Solution:
$$\frac{5}{9} \cdot \frac{4}{8} \approx 27.78\%$$

► P(two different colors) =?

Solution:
$$\frac{5}{9} \cdot \frac{4}{8} + \frac{4}{9} \cdot \frac{5}{8} \approx 55.56\%$$

13 / 17

Basic Probability with Examples 7/10

Union of events. The union of two events A and B consists of all those outcomes that belong to A or B or both A and B.

Addition Rule for the union of events

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

inclusive OR

logical AND

If A and B are mutually exclusive, (this means: $P(A \land B) = 0$) we get:

$$P(A \vee B) = P(A) + P(B)$$

14 / 17

Basic Probability with Examples 8/10

Example

An experiment consists of rolling a die, $\Omega = \{1, 2, 3, 4, 5, 6\}$. Let Z be the outcome. We define two events:

► **A**: Z > 3

B: Z is an even number

Find the probability that A or B (or both) events occur.

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

 $P(A \lor B) = \frac{3}{6} + \frac{3}{6} - \frac{2}{6} = \frac{2}{3}$

Example: mutually exclusive events

Problem: A box contains 5 red, 3 green and 4 white marbles. Find the probability that one marble is white or green.

Solution: Since the events are mutually exclusive (there are no marbles which are white and green). We get: P(white or green) = $\frac{3}{12} + \frac{4}{12} = \frac{7}{12}$.

Basic Probability with Examples 9/10

Example 1

Problem: One ball is drawn from a bag containing 3 white, 4 red, and 5 black balls. What is the probability that ...

1. it is red?

2. that it is white or red?

3. that it is **not** red?

Solution: 1. $\frac{1}{3}$ 2. $\frac{7}{12}$, 3. $\frac{2}{3}$

Example 2

Problem: If two dice are tossed, what is the probability of throwing a total of 10 or more? Hint: Tabulate the results!

Solution: $\frac{1}{6}$

Example 3

Problem: Alice, Bob, and Christian work independently on a problem. If the respective probabilities that they will solve it are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{2}{5}$, find the probability that the problem will be solved.

Solution: 80 %

15 / 17 16 / 17

Basic Probability with Examples 10/10

Example 4

Problem Consider the example of selecting a card at random from an ordindary deck of cards. Find the probability that it is a **King or a Heart**. Hint: There are 52 cards (clubs, diamonds, hearts and spades) and 13 cards each (ace, 2-10, Jack, Queen and King). **Solution:** $\frac{4}{13}$

Example 5

Problem A coin is tossed and a six-sided die is rolled. Find the probability of getting a head on the coin and a 6 on the die. **Solution:** $\frac{1}{12}$