III. Combinatorics

- Permutations and Combinations

Permutations and Combinations (2/5)

Permutation with repetition
The number of permutations of n objects with n_{1} identical objects of type $1, n_{2}$ identical objects of type $2, \cdots$, and n_{k} identical objects of type k is

$$
\frac{n!}{n_{1}!\cdot n_{2}!\cdots n_{k}!}
$$

Example: Permutation with repetition

Problem:

How many total arrangements of the letters in MISSISSIPPI are there?
Solution:

Letter	Frequency
M	1
I	4
S	4
P	2
total	11

Permutations and Combinations 1/5

Combinatorics is an area of mathematics primarily concerned with counting. Understanding the basic ideas is crucial for understanding statistical concepts.
Permutation without repetition

Factorial of a number

$$
n!=n \cdot(n-1) \cdots 2 \cdot 1
$$

n ! gives the possible arrangements of n distinguishable objects. Note that

$$
n!=\prod_{i=1}^{n} i
$$

Special cases: $1!=1$ and $0!=1$

Example: Permutation without repetition

Problem:

How many different ordered arrangements of the letters a, b, and c are possible? Solution:
There are $3!=3 \cdot 2 \cdot 1=6$ possible arrangements.

Binomial Coefficient

$$
\begin{aligned}
& \text { Binomial Coefficient } \\
& \qquad\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}
\end{aligned}
$$

Note that
The binomial coefficient tells us how many ways there are to choose k things out of large set consisting of n things.
Some Theorems:

Theorem 2
$\binom{n}{n}=1$

Theorem 3

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Theorem 3 is called the Symmetry Rule for Binomial Coefficients.

Permutations and Combinations (4/5): Example

Example: Selection problem

Problem:

How many teams of 4 people be chosen from a company that employs 20 people?
Solution:
There are $\binom{20}{4}=4845$ ways
Note
This is a special case of a permutation with 2 groups (selected vs. non-selected objects).

Permutations and Combinations (5/5): Examples

Example 1

Problem

In how many ways can 5 people be seated on a sofa?
Solution: 120 ways

Example 2

Problem:

Five red books, two white books and three blue books are arranged in a shelf. If all the books of the same color are not distinguishable from each other, how many different arrangements are possible?
Solution: $=2520$ arrangements
Example 3
A teacher selects six exam questions from a pool comprising 15 questions. How many different exams are possible (if the order of the questions is not important)?
Solution: $=5005$ ways

Basic Probability with Examples 1/10

Probability is a measure of the likelihood of the occurrence of an event. The relative frequency definition of probability states that if an experiment is performed n times, and if event E occurs f times, then the probability of event E is given by the following formula:

Relative frequency definition

$$
P(E)=\frac{f}{n}
$$

Note that this is only true for equally likely outcomes. The sample space Ω of an experiment or random trial is the set of all possible outcomes or results of that experiment. An event is a subset of the sample space Ω. Note that Ω itself and the empty set $\}$ are also subsets of Ω.
Example: Relative Frequency Definition
An experiment consists of rolling one unbiased dice. The sample space for this experiment is $\Omega=\{1,2,3,4,5,6\}$. Let \mathbf{E} be the event an even number occurs. The event happens, if we get two or four or six $\{2,4,6\}$. Since the dice is unbiased (every outcome is equally likely) we get $P(E)=\frac{3}{6}=\frac{1}{2}$ or 50%.

Basic Probability with Examples 2/10
Basic Probability with Examples 3/10

Range of values for probabilities

$$
0 \leq P(E) \leq 1 \text { and } P(\Omega)=1
$$

Example: Range of values
An experiment consists of rolling one unbiased dice. The sample space for this experiment is $\Omega=\{1,2,3,4,5,6\}$. Now let us define two events:

- A the outcome of the experiment is 7
- B the outcome is an integer number

Now we calculate the probabilities: $P(A)=\frac{0}{6}=0=0 \%$ and $P(B)=\frac{6}{6}=1=100 \%$ Note that \mathbf{A} is called the impossible event and \mathbf{B} is called the certain event.

Be careful:
Note that an impossible event has zero probability but not all zero-probability events are impossible!

Basic Probability with Examples 4/10

Multiplication Rules for compound events (A and B occurs): independent events

Multiplication Rule for independent events

$$
P(A \wedge B)=P(A) \cdot P(B)
$$

Example: Finding the probability for A and B
Find the probability of rolling a six on a single 6 -sided die, and then again rolling a six. Since the two experiments are independent, we get

Complementary event. To every event E there is a complementary event $\neg E$.
Rule for the complementary event (very helpful!)

$$
P(E)+P(\neg E)=1
$$

Example: Finding the Probability for a Complementary Event Approximately 3% of a population is diabetic. The probability that a randomly chosen citizen from that population is not diabetic is 0.97 or 97%.

Basic Probability with Examples 5/10

Drawing a tree diagram. The best and easiest way to solve problems involving compound events is to use a tree diagram.

- Draw a tree with one branch for each possible outcome in one experiment.

Write the probability of each branch on the branch and the outcome at the end of the branch.
Extend the diagram for each rerun of the experiment

- Multiply the probabilities of interest along the branches.
- Add the results that lead to the desired outcome.
- If this is done correctly, the final probabilities of all branches add up to 1 .

Example:
Experiment: Flip a biased coin twice (probability for head $=40 \%$, probability for tail $=60 \%$). Find the following probabilities:

- P (head and head) (Solution: 16\%)
- $P($ at least once head) (Solution: 64\%)
- P (two different results) (Solution: 48\%)

Basic Probability with Examples 6/10

Multiplication Rules for compound events (A and B occurs): dependent events

Multiplication Rule for dependent events. Draw a tree diagram! Note that the probabilities change after each run of the experiment.

Example:

A box contains 5 red and 4 blue marbles. Two marbles are withdrawn randomly without replacement. Calculate the following probabilities:

- $\mathrm{P}($ both are red $)=$?

Solution: $\frac{5}{9} \cdot \frac{4}{8} \approx 27.78 \%$

- P (two different colors) $=$?

Solution: $\frac{5}{9} \cdot \frac{4}{8}+\frac{4}{9} \cdot \frac{5}{8} \approx 55.56 \%$
Union of events. The union of two events A and B consists of all those outcomes that belong to A or B or both A and B .

Addition Rule for the union of events

$$
P(A \vee B)=P(A)+P(B)-P(A \wedge B)
$$

\checkmark inclusive OR
\wedge logical AND

If A and B are mutually exclusive, (this means: $P(A \wedge B)=0$) we get:

$$
P(A \vee B)=P(A)+P(B)
$$

Basic Probability with Examples 8/10

Example

An experiment consists of rolling a die, $\Omega=\{1,2,3,4,5,6\}$. Let Z be the outcome. We define two events:

- A: Z > 3
- $\mathrm{B}: \mathrm{Z}$ is an even number

Find the probability that A or B (or both) events occur.

$$
\begin{gathered}
P(A \vee B)=P(A)+P(B)-P(A \wedge B) \\
P(A \vee B)=\frac{3}{6}+\frac{3}{6}-\frac{2}{6}=\frac{2}{3}
\end{gathered}
$$

Example: mutually exclusive events
Problem: A box contains 5 red, 3 green and 4 white marbles. Find the probability that one marble is white or green.
Solution: Since the events are mutually exclusive (there are no marbles which are white and green). We get: $\mathrm{P}($ white or green $)=\frac{3}{12}+\frac{4}{12}=\frac{7}{12}$.

Basic Probability with Examples 9/10

Example 1

Problem: One ball is drawn from a bag containing 3 white, 4 red, and 5 black balls.
What is the probability that..

1. it is red?
2. that it is white or red?
3. that it is not red?

Solution: 1. $\frac{1}{3}$ 2. $\frac{7}{12}, 3 . \frac{2}{3}$

Example 2

Problem: If two dice are tossed, what is the probability of throwing a total of 10 or more? Hint: Tabulate the results!

Solution: $\frac{1}{6}$

Example 3

Problem: Alice, Bob, and Christian work independently on a problem. If the respective probabilities that they will solve it are $\frac{1}{2}, \frac{1}{3}$ and $\frac{2}{5}$, find the probability that the problem will be solved.
Solution: 80 \%

Basic Probability with Examples 10/10

Example 4
Problem Consider the example of selecting a card at random from an ordindary deck of cards. Find the probability that it is a King or a Heart. Hint: There are 52 cards (clubs, diamonds, hearts and spades) and 13 cards each (ace, 2-10, Jack, Queen and King).
Solution: $\frac{4}{13}$
Example 5
Problem A coin is tossed and a six-sided die is rolled. Find the probability of getting a head on the coin and a 6 on the die. Solution: $\frac{1}{12}$

