VIII. Statistical Tests (Part I)

- Introduction to Statistical Testing
- Testing with the Binomial Distribution

Introduction to Statistical Testing (2/6)

Statistical Testing

- We begin by making a tentative assumption about a population parameter - the null hypothesis.
- Next we define the alternative hypothesis, which is the opposite of what is stated in the null hypothesis.
- Then we define a value for α. Usually $\alpha=5 \%$ or $\alpha=1 \%$. This is our risk for a type I error (see later).

Statistical Testing

- How to establish scientific knowledge based on empirical observation
- How to draw a conclusion from a sample that is valid for the population
- With inferential statistics, you are trying to reach conclusions that extend beyond the immediate data alone.
- Hypothesis testing can be used to determine whether a statement (our assumption) about the value of a population parameter should or should not be rejected.

Statistical Testing

- We perform a statistical test that yields a test statistic which (under the null hypothesis) follows a certain distribution.
- Then we decide if we accept or reject our null hypothesis:
- If we calcuate the test statistic by hand we use tables that list the critical values for rejection of the null hypothesis. Since it is very common to use $\alpha=5 \%$ or $\alpha=1 \%$, we find these critical values in the table.
- If we use software, we usually get the (exact) \mathbf{p}-value. We reject the null hypothesis, if this p -value is less than α.
- There is usually a decision that follows the acception or the rejection of the null hypothesis.

Be careful!

- Whatever your result is, it never proves the hypothesis.
- Pay attention to the descriptive measures as well to avoid pitfalls (especially when using software).
- P-value misunderstandings are very common.

Introduction to Statistical Testing (6/6)

Type I and Type II error

	H0 true in population	H0 wrong in population
Test result: ac- cept H0	Correct conclusion!	Type II Error
Test result: re- ject H0	Type I Error	Correct conclusion!

Type I or Type II error - which one is worse?
There is no general rule. It always depends on the context and on the type of problem you analyze!

Interpreting a p-value
The \mathbf{p}-value of a test is the probability of obtaining an effect at least as extreme as the one you observed in your sample data, assuming the truth of the null hypothesis.

To put this in other words: If the null hypothesis is true, the \mathbf{p}-value is the probability of obtaining your sample data. It answers the question if your sample data is unusual if the null hypothesis is true. If it is too unusual, we reject the null hypothesis.

Testing with the Binomial Distribution (1/5)

We are already familiar with the binomial distribution, a discrete probability distribution that gives us the probability for exactly k successes if we run an experiment n times:

$$
\begin{aligned}
& \text { Binomial Distribution } \\
& \qquad P(\mathrm{k} \text { successes of } \mathrm{n} \text { trials })=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k}
\end{aligned}
$$

$$
\text { for } k \in\{0,1, \cdots, n\}
$$

The binomial test is used when an experiment has two possible outcomes and you have an idea about what the probability of success is. A binomial test is run to see if observed test results differ from what was expected

Testing with the Binomial Distribution (2/5)

1. Pick a value for α (common values are 5% or 1%) before your test and formulate your hypotheses.
2. Determine if the left or the right tail of the binomial distribution is your rejection region for H_{0}.
3. In your experiment, you had exactly k successes out of n trials
4. If your rejection region is on the right hand side of the binomial distribution, reject H_{0} if $\sum_{i=k}^{n} P(X=i) \leq \alpha$
5. If your rejection region is on the left hand side of the binomial distribution, reject H_{0} if $\sum_{i=0}^{k} P(X=i) \leq \alpha$
6. Otherwise, do not reject H0.

Testing with the Binomial Distribution (4/5)

Example: Extrasensory Perception (contd.)
3. We counted $\mathrm{k}=35$ successes.
4. We calculate $P(X=35)+P(X=36)+\cdots P(X=40)$. Using Excel, we get a p-value of 0.000000691306
5. (We are not interested in the left hand side of the distribution. We do not want to reject H0 if our candidate is extremely untalented.)
6. Reject H_{0} because $0.000000691306<0.05$

Testing with the Binomial Distribution (3/5)
Example: Extrasensory Perception
In an experiment on extrasensory perception (ESP), an individual is asked to state the result of (head or tail) of tossing an unbiased coin. If the individual states 35 times out of 40 results correctly, determine whether the results are significant at a 5% level.

1. $\alpha=5 \% . H_{0}: \mathrm{P}$ (success) $\approx 50 \%, H_{1}: \mathrm{P}$ (success) $>50 \%$
2. If k is the number of sucesses, clearly the right tail of the distribution is of interest.

Distribution of number of successes under $\mathbf{H 0}(\mathrm{p}=0.5)$

Testing with the Binomial Distribution (5/5)

This is what inferential statistics is about.

IX. Statistical Tests (Part II)

- χ^{2} Tests for Frequencies
- χ^{2} Test for Contingency Tables

χ^{2} Test for Frequencies (1/6)

The results obtained in samples do not always agree exactly with the theoretical results expected according to the rules of probability. For example, although theoretical considerations lead us to expect 50 heads and 50 tails when we toss a fair coin 100 times, we are not surprised if we get 47 tails and 53 heads or similar results. Given n events (E_{1}, E_{2}, \cdots, E_{n}) we can summarise the results from an experiment as follows:

Event	E_{1}	E_{2}	\cdots	E_{n}
Observed Frequency	o_{1}	o_{2}	\cdots	o_{n}
Expected Frequency	e_{1}	e_{2}	\cdots	e_{n}

The expected frequencies can be calculated using the probabilities for each event and the sample size. We can now calculate a measure of discrepancy between the observed and the expected values. This measure is called a χ^{2}-statistic.

$$
\chi_{\mathrm{emp}}^{2}=\sum_{i=1}^{n} \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}}
$$

Note that always $\chi^{2} \geq 0$ (and $\chi^{2}=0$ if and only if all observed frequencies agree exactly with the expected frequencies). The larger the value of χ^{2}, the more discrepancy between the observed and the expected frequencies.
χ^{2} Test for Frequencies (2/6)
Under H_{0}, the χ^{2} statistic follows the χ^{2} sampling distribution with $n-1$ degrees of freedom.
Mathematical Background: χ^{2}-distribution

- The area under the curve is equal to 1
- The curve starts at zero and indefinitely extends to the right (never touches the x-axis)
- The parameter df (the degrees of freedom) determines the shape of the curve. For our problem, $\mathrm{df}=\mathrm{n}-1$.

χ^{2} Test for Frequencies (3/6)
The χ^{2} Test Procedure

1. Determine α (e.g. 5% or 1%) and state the null and alternative hypothesis
2. H_{0} states that there is no difference between the the distributions, H_{1} states that there is a difference.
3. Calculate the empirical χ^{2}-value
4. $\mathrm{df}=\mathrm{n}-1$ (where n is the numer of categories)

$$
\chi_{\mathrm{emp}}^{2}=\sum_{i=1}^{n} \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}}
$$

5. Make your decision for or against H_{0} :

Critical value decision rule
(You need a table)

- if $\chi_{\text {empirical }}^{2}>x_{\text {critical }}^{2}$ reject H_{0}
- if $\chi_{\text {empirical }}^{2} \leq \chi_{\text {critical }}^{2}$ do not reject H_{0}

Decision rule based on software output

- if the p -value $<\alpha$ reject H_{0}
- if the p -value $\geq \alpha$ do not reject H_{0}
χ^{2} Test for Frequencies $(4 / 6)$

EXCEL-Functions

=CHISQ.TEST(observed; expected)
 $=$ CHISQ.INV (probability; df)

=CHISQ.DIST(x ; df; TRUE)
performs a χ^{2} Test, returns the p -value.

Returns the inverse of the left-tailed probability of the χ^{2} distribution.

Returns the area under the curve from 0 to x.
χ^{2} Test for Frequencies (6/6): Example (continued)

Example 1: Safety at Work (contd.)
At first we calculate the expected probabilities:

day of the week	Mon.	Tues	Wed.	Thurs.	Fri	SUM
Number of accidents	135	108	120	114	146	$\mathbf{6 2 3}$
expected under H_{0}	124.6	124.6	124.6	124.6	124.6	$\mathbf{6 2 3}$

Now we calculate the test statistic:

$$
\chi^{2}=\frac{(135-124.6)^{2}}{124.6}+\frac{(108-124.6)^{2}}{124.6}+\cdots+\frac{(146-124.6)^{2}}{124.6} \approx 7,83
$$

In the table $(\alpha=5 \%, \mathrm{df}=4)$ we find the critical value 9,488 . Since $9,448>7.83$ we do not reject H_{0}. The number of accidents does not depend on the day of the week.

Example 1: Safety at Work

You collected data about industrial injuries over the past 10 years:

day of the week	Mon.	Tues	Wed.	Thurs.	Fri
Number of accidents	135	108	120	114	146

Test the hypothesis that the number of accidents does not depend on the day of the week (H_{0}) using a significance level of $\alpha=5 \%$.

χ^{2} Test for Contingency Tables (1/4)

The χ^{2} Test Procedure for Tables

1. Determine α (e.g. 5% or 1%) and state the null and alternative hypothesis.
2. Calculate sums for the rows and columns and calculate the table with the expected values.
3. H_{0} states that there is no difference between the the distributions, H_{1} states that there is a difference.
4. Calculate the empirical χ^{2}-value using the table with the observed and the expected frequncies:

If our tables (for the observed and the expected frequencies) have n rows and m columns we calculate the following test statistic:

$$
\chi^{2}=\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\left(o_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

5. If your table has n rows and m columns, $d f=(n-1) \cdot(m-1)$
6. Make your decision for or against H_{0} using the χ^{2}-table.
χ^{2} Test for Contingency Tables (2/4)

Example: Sex and Political Views
Consider the following tabulated results depicting the results of a survey:

sex/party	Democrat	Independent	Republican
F	762	327	468
M	484	239	477

(Example from Agresti, A. (2007). An Introduction to Categorical Data Analysis, $2^{\text {nd }}$ ed., New York: John Wiley \& Sons, page 38.)
One might come up with the following question:
Is there a relationship between the variables sex and political views?

21/23
χ^{2} Test for Contingency Tables (3/4)

Solution: Sex and Political Views (contd.)

1. $\alpha=5 \%$
2. We calculate row and columnsums first:

sex/party	Democrat	Independent	Republican	sums
F	762	327	468	$\mathbf{1 5 5 7}$
M	484	239	477	$\mathbf{1 2 0 0}$
sums	$\mathbf{1 2 4 6}$	$\mathbf{5 6 6}$	$\mathbf{9 4 5}$	$\mathrm{N}=\mathbf{2 7 5 7}$

and now we caluclate the expected frequencies using these sums:

sex/party	Democrat	Independent	Republican	sums
F	703.6714	319.6453	533.6834	$\mathbf{1 5 5 7}$
M	542.3286	246.3547	411.3166	$\mathbf{1 2 0 0}$
sums	$\mathbf{1 2 4 6}$	$\mathbf{5 6 6}$	$\mathbf{9 4 5}$	$\mathbf{N}=\mathbf{2 7 5 7}$

Hint: For each cell, multiply the corresponding rowsum with the corresponding columnsum and divide by the sample size, e.g. $\frac{1246 \cdot 1557}{2757}=703.6714$
χ^{2} Test for Contingency Tables (4/4)

Solution: sex and political views (continued)

3. H_{0} states there is no relationship between sex and political views, H_{1} states there is a relationship.
4. Now we calculate our measure of discrepancy:

$$
\chi^{2}=\frac{(762-703.6714)^{2}}{703.6714}+\frac{(327-319.6453)^{2}}{319.6453}+\cdots+\frac{(477-411.3166)^{2}}{411.3166} \approx 30.07
$$

5. Our parameter $d f=(2-1) \cdot(3-1)=2$ since we have 2 rows and 3 columns.
6. The critical value $(\mathrm{df}=2,5 \%)=5.99$. We reject H 0 , because $30.97>5.99$.
