kruskal.test
binom.test

et
O
C
=
Q.
@)
)
7))
S

C
ke
o < TRUE NaN
Spreak = Eks.fest

7 next Im
hisq.test

lot2 function

while

else

Alexander Hirner
Aleksandra Tyjan

Version 6 (Juni 2024)

R - Part |

Version 6.0 (June 2024)

Alexander Hirner

Table of contents

1 Getting Started

2 The Most Important R Objects (Overview)

3 Data Managment (data.frame Objects in Detail)
4 Selected Functions

5 Groupwise Descriptive Statistics

6 Graphs

7 Functions and Control Flow by Example

8 Recommended Reading

14
19
21
27

30

1 Getting Started

1.1 Installation

1. Download R from https://www.r-project.org.
2. Install the tidyverse package by typing in install.packages("tidyverse").
3. Install an editor. Recommendations:

o Visual Studio Code from https://code.visualstudio.com/ or
o RStudio from https://www.rstudio.com/.

Order of Installation

If you are using RStudio, the order of installation (first R, then the editor) matters (otherwise you
will get an error during installation).

1.2 Recommended Packages

e tidyverse - A collection of packages for data science.

e ggplot2 - Elegant data visualisations using The Grammar of Graphics.

e XLConnect - Excel connector for R.

e foreign - Read data stored by Minitab, SPSS, SAS, etc.

e dplyr - A grammar of data manipulation.

e tidyr - Tidy messy data.

o data.table - Extension of data.frame (fast!)

e doBy - Groupwise Statistics, LSmeans, Linear Estimates, Utilities.

o cowplot - Various features to create publication-quality figures (e.g. combining plots).

@ Installing Packages

The command to install additional packages is install.packages("..."). However, it is possible
that the editor which you are using, supports you, i.e. in RStudio you can click on Tools and
Install packages (and then simply follow the instructions).

Functions from previously installed packages can be invoked by

1. using the syntax packagename: :functionname(...) or

2. “loading” the package using library(packagename) or require (packagename) (preferably at the
beginning of a script) which makes the prefix packagename:: unnecessary then (to “remove” the
package again use detach).

Note that each way has its advantages and disadvantages.

1.3 Basic R Commands

Let us start with the “basics” first, e.g. creating simple objects, inspecting and deleting them, managing

file paths and getting help:

Command

Description

getwd ()
setwd("path")

variable <- value

variable <- c(vall, val2,
1s0O

rm(object)

help()

?7object
help.search("searchstring")
?7searchstring

#

data()

Gets working directory.

Sets working directory (R uses forward slashes in
file paths!).

Assigning a value to a variable.

Assigning values to a variable (c is for combine).
Lists all objects in the workspace.

Removes an object.

Getting help.

An alias for help().

Searches the help system for a given string.

An alias for help.search().

The hash sign introduces a comment.

Lists built-in sample data.

Functions can also be nested (i.e. “a function in a function”), e.g. the command rm(1list=1s()) deletes

everything from memory.

Using rm(list=1s())

The command rm(list=1s()) is helpful to clean up the memory before starting a new script or

project. However, use it with caution since there is no “undo” for this command.

2 The Most Important R Objects (Overview)

2.1 Vectors

Usage and Important Operations

Vectors can be used as “containers” to store univariate data.

Command Description

x <- c(vall, val2, ...) Creates a vector. Use quotes for string literals.

x[i] Value on position i of vector x. The first element
is on position 1 in R.

x[-1] All values except for the one on position i.

x[j:k] Observations from position j to position k.

x[c(j,m)] Observations on position j and m.

length(x) Number of Observations in x.

rev(x) Reverses elements of x.

x <- seq(from, to , by)

x <- rep(pattern, n)

Generates an arithmetic progression. Use 1:n as
an alias for seq(1,n,1).
Repeats a pattern n times

About R Objects

Commands like x[-1] or rev(x) never change the object in situ - these commands (when used

in interactive mode) simply print out the values to the console. If you want to change the vector

permanently, the assignment operator (<-) must be used.

Example

a vector:

height <- c(180, 167, 198.5, 156, 170, 172, 169, 155)
height <- height[-3] # drop the third entry

summary (height) # summary statistics

Min. 1st Qu. Median Mean 3rd Qu.
155.0 161.5 169.0 167.0

Max.
180.0

2.2 Objects of the data.frame-Class
Usage and Important Operations

A data.frame is the appropriate structure to store multivariate data, i.e. data consisting of n rows
(observations) and k columns (variables or data fields).

Command Description

X <- data.frame(vl, v2, ...) Creates a data.frame. Here, vl and v2 are
vectors of the same length.

X[i,] Row (observation) i.

X[,k] Column (variable) k.

X[i:j,] Observations from row i to j (and all variables).

X[c(i,k),] Observations in row i and k (and all variables).

X[-c(i,k), 1] All observations except those in row i and k (and
all variables).

X[, c(i,k)] All rows, only column i and k.

X[, -c(i,k)] All rows, drop values in column i and k.

X$varname Addresses a column by its name.

names (X) Gets (or assigns) variable names.

Example

In the following example we will create a small data.frame with n=5 observations (cats) and k=3 variables
from scratch:

id <- ¢(1,2,3,4,5) # or 1:5

sex <- c("male", "female", "female", "female", "male")
weight <- c(3, 4, 3.7, 2.5, 0.9)

cats <- data.frame(id, sex, weight)

rm(id, sex, weight) # drop original vectors now!

This is our data:

print(cats)

id sex weight
male 3.0
female 4.0
female 3.7
female 2.5
male 0.9

a oD W N -
gD W N -

Now let us address one of the columns, i.e. “weight” (weight of the cat in kilos) to calculate their average:

mean(cats$weight)

[1] 2.82

Now let us drop the column “id” because we do not need it and display the data.frame:

cats <- cats[, -1]

cats

sex weight
1 male 3.0
2 female 4.0
3 female 3.7
4 female 2.5
5 male 0.9

2.3 Lists
Usage and Important Operations

 Lists in R are capable of storing different data types (strings, numbers, vectors, data.frames or even
lists).

o If you want to create a list “from scratch”, use the function 1ist and simply pass the objects that
you want to store in the list. With names () it is possible to assign names to the elements stored in
the list.

o Whenever you run a statistical procedure (e.g. ANOVA, linear regression, cluster analysis, ...) the
output should always be stored in a variable. This variable is often a list (or at least “behaves”
like a list). List elements can be addressed by using the $-symbol or double square brackets and an
index.

e Note that a data.frame is a special kind of a 1ist - it is a 1ist where all elements are vectors of
the same length.

Example

vl <= c(1, 2, 3)

v2 <= c("a","b","c")

v3 <- data.frame(vl, v2)

v4d <=7

vb <- "hello world"

mylist <- list(vl,v2,v3,v4,v5)

names (mylist) <- c("v1","v2", "DF", "a_number", "a_string")

We can now address single elements from the list:

print (mylist$vi)

[1] 123

print(mylist$a_string)

[1] "hello world"

2.4 Matrices
Usage

You might need the matrix data type if you do linear algebra with R.
Example

x <- seq(1,12,1) # or simply x <- 1:12
y <- matrix(x, nrow=3, byrow=TRUE)
print(y)

[,11 [,2] [,3] [,4]
[1,] 1 2 3 4
[2,1] 5 6 7 8
[3,] 9 10 11 12

In the example above, a matrix with 12 elements (numbers from 1 to 12) and three rows (nrow) was

created. Alternatively, you can specify ncol (the number of columns). The flag byrow indicates whether
the matrix should be filled up “row-wise” (if TRUE) or “column-wise” (if FALSE).

With t (X) you can transpose a matrix X. This command also works for objects of the data. frame-class.

2.5 Type Conversions

Sometimes the following type conversion functions can be helpful:

e as.numeric

e as.character
e as.vector

e as.matrix

e as.data.frame

2.6 More Data Types

There are more data types (i.e. there are objects of the tibble-class and some more). These data types

require additional packages but their behaviour and purpose (storing multivariate data) is similar to a
data.frame.

3 Data Managment (data.frame Objects in Detail)

3.1 Logical Operators

For some operations (e.g. filtering data or creating new variables) we need comparison operators:

Command Description

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equality

I= inequality

%in% match with one element of a vector?

These operators can be combined using & (logical AND) or | (logical OR).

3.2 Working with Files

Command Description

read.table Reads a file and creates a data.frame from it.
read.csv Reads a file and creates a data.frame from it.
read.csv2 Reads a file and creates a data.frame from it.
write.table Prints a data.frame to a file.
write.csv Prints a data.frame to a file.
write.csv2 Prints a data.frame to a file.

If you want to import data from an Excel-file directly (i.e. without saving it as a csv-file), you can use
the function readWorksheetFromFile from the library XLConnect.

Possible pitfalls when dealing with files
e Make sure you are in the right directory. You might need the setwd-command.

o The functions listed above differ with respect to their default settings (i.e. for the field separator
string and the decimal symbol). Use the help function to find out details.

o Commands such as write.table (or related functions) overwrite existing files

without warning (!).

3.3 Data Managment Operations in Detail

Command Description

dim(X) Displays number of rows and columns.
head (X, n) Returns the first n rows of X.

tail (X, n) Returns the last n rows of X.

str(X) Compactly displays structure of X.

Z <- rbind(X, Y)
Z <- cbind(X, Y)
X$new <- formula
X <- transform(X, newl=f1l, new2=£f2,...)

names (X)

ifelse(cond, ifpart, elsepart)
Y <- subset(X, conditions)

X <- X[order (X$var),]

Y <- split(X, X$splitvar)

Y <- merge(x, y, by.x, by.y)

Adding observations from X and Y.

Adding a column to X.

Creates a new column in X with a formula.
Calculates new columns newl and new2 with the
formula f1 or 2, respectively.

Displays (or changes) variable names.
Conditional execution (i.e. for recoding).

Creates a subset Y based on logical conditions.
Sorts your data.frame by one or more variables.
Use decreasing=TRUE for descending order.
Creates a list of data.frame-objects (for each
value of splitvar).

Merges (i.e. joins) data.frame-objects by a
common column.

10

3.4 Example

At first let us create some data, e.g. 10 observations and three variables:

id <- 1:10

sex <- rep(c("m", "f"), 5)

set.seed(123)

height <- round(rnorm(10, mean=172, sd=10), 1)
X <- data.frame(id, sex, height)

head (X)

id sex height

1 1 m 166.4
2 2 £ 169.7
3 3 m 187.6
4 4 £ 172.7
5 5 m 173.3
6 6 f 189.2

Now let us sort the data.frame in descending order by the variable height:

Y <-X
Y <- Y[order(Y$height, decreasing=TRUE),]
head (Y, 3)

id sex height
6 6 f 189.2
3 3 m 187.6
7T 7 m 176.6

11

Now we can create another column, the height in meters:

Y <- X
Y <- transform(Y, heightm = height/100)
head (Y, 2)

id sex height heightm
1 1 m 166.4 1.664
2 2 f 169.7 1.697

We can also classify the subjects as follows (lte... less than or equal, gt... greater than):

Y <- X

Y$class <- ifelse(Y$height > median(Y$height),
"height gt median", "height lte median")
Y[6:8,]

id sex height class
6 6 f 189.2 height gt median
7 7 m 176.6 height gt median
8 8 f 159.3 height 1lte median

We want to create a new data.frame using a query and the subset-command to copy only females taller
than 172 cm:

Y <- X
Y1 <- subset(Y, (height > 172) & (sex=="f"))
Y1

id sex height
4 4 £ 172.7
6 6 f 189.2

12

The following example illustrates the usage of the split-function. It returns a list of data.frame-
objects:

Y <- X
by_sex <- split(Y, Y$sex)
by_sex

$f

id sex height
2 £ 169.7
4 172.7
6 189.2
8 159.3
10 10 167.5

0o O N

$m

id sex height
1 m 166.4
187.6
173.3
176.6
165.1

© N 00 W~
© N 00w

m
m
m
m

Recoding a variable into more than two categories:

Y <- X

Y$category[Y$height <= 170] <- "category 1"
Y$category[Y$height >= 170 & Y$height <= 176] <- "category 2"
Y$category[Y$height > 176] <- "category 3"

head (Y, 4)

id sex height category
1 m 166.4 category 1
2 £ 169.7 category 1
3 m 187.6 category 3
4 £ 172.7 category 2

DS W N -

13

4 Selected Functions

4.1 Preliminary Remarks

Applying Functions to Columns

@ Applying functions to columns

Functions can also be applied to whole vectors of data (columns in your data.frame) - in contrast
to other programming languages, there is no need to use loops here.

Possible Pitfalls

Possible pitfalls

o The function log() is the “natural” logarithm.

o Trigonometric functions (and inverse trigonometric functions) return/expect the angle in radi-

ans (not in degrees!)

4.2 Common Functions in R

Function

Description

+, =, %,/

a"b or axxb

sqrt (x)

pi, exp(1)

sin(x), cos(x), tan(x)
asin(x),acos(x), atan(x)
floor(x), ceiling(x)
round(x, digits)
log(x)

log10(x)

exp (x)

sum(x)

cumsum (x)

prod(x)
cumprod (x)

paste(x, y)
class(x)
cat(x, y)

14

Basic math.

Returns a®.

NI

Mathematical constants.

Trigonometric Functions.

Inverse trigonmetric functions.

Rounding to the next integer.

Rounding to a given precision.

(natural) logarithm.

logarithm (base 10).

Returns e”.

Returns the sum of all elements in vector x.
Returns the cumulated sum of all elements in
vector x.

Returns the product of all elements in vector x.
Returns the cumulated product of all elements in
vector X.

Concatenates strings.

Object classes.

Concatenates and prints.

Function Description

unique (x) Removes duplicates.

set.seed(seed) Sets seed for random number generation.

4.3 Using any, all and which

Functions
Function Description
any(...) Are some values TRUE?
all(...) Are all values TRUE?
which(...) Which indices are TRUE?
Examples

xl <- c(1, 3, 5, 9, 7)

any(is.na(x1))

[1] FALSE

all(xl > 2)

[1] FALSE

which(xl > 6)

[1] 4 5

4.4 Set Functions

Function Description
union(A, B) AUB
intersect (A, B) ANB
setdiff (A, B) A\B

setequal(A, B) Is A =B?
is.element(x, A) x € A?

15

4.5 Combinatorics

Function

Description

factorial (x)
choose(n, k)

combn (x, m)

sample(x, size, replace)

Returns z! (number of permutations).
Eﬁnonﬁalcoeﬂhﬁent,ie.(ﬁ)

Generates all combinations with m objects of the
elements in x.

Randomly selects elements.

4.6 Basic Descriptive Statistics

Functions

Function

Description

mean (x)

median(x)

sd (x)

var (x)

fivenum(x)

min(x)

max (x)

quantile(x, probs)
cor (x)

cov(x)

Arithmetic mean.

Median.

Standard deviation.

Variance.

Tukey’s five number statistics.
Minimum.

Maximum.

Quantiles.

Correlation.

Covariance.

Examples

set.seed(789); x <- rnorm(15)
x[1:4]

[1] 0.52409671 -2.26076788 -0.01967972 0.18313989

fivenum(x)

[1] -2.26076788 -0.57710626 -0.36135148 0.08173009 0.92790739

quantile(x, probs=seq(0, 1, 0.2))

0% 20% 40%

60% 80% 100%

-2.2607679 -0.7336064 -0.4351714 -0.1764192 0.2513313 0.9279074

16

4.7 Probability Distributions

All functions dealing with probability distributions always consist of a prefix (d, p, q or r) plus the
(abbreviated) name of the distribution (e.g. norm, unif, chisq, etc.).

Example 1
We want to draw five numbers from a y? distribution with 3 degrees of freedom:

set.seed(123); rchisq(n=5, df=3)

[1] 1.03611518 5.08870916 0.04818784 2.26693313 6.90085393

Example 2

If the height of male students follows a normal distribution with g = 174 cm and ¢ = 7 cm, what
percentage is taller than 180 cm? (Solution: ~ 19.57 %)

pnorm(180, mean=174, sd=7, lower.tail=FALSE)

[1] 0.195683

4.8 Notes on Missing Values
Missing Values

e The function is.na(x) returns TRUE for missing and FALSE for non-missing values in a vector x.
Therefore you can easily count the missing values by using is.na and the function sum.

o Other comparison operators (==, !=) can not be used to detect missing values (Comparisons involv-
ing missing values always return NA).

o The function length counts all values in a vector (regardless of their “missing status”).

o Functions such as mean or sd fail (return NA) whenever there is at least one value missing - unless
you specify na.rm=TRUE in the function call.

o The table command (which creates a frequency table) by default will ignore missing values unless
you specify useNA="always" or useNA="ifany" in the function call.

o Sometimes missing values are coded as 999 (or similar) in your data. You can replace them using
the which command.

17

Example

weight... weight of students in kilos, 999 means "missing" here.
weight <- c(79, 88, 59, 999, 91, 60)
mean (weight)

[1] 229.3333

Replace 999 by NA

weight [which(weight==999)] <- NA
weight

[1] 79 88 59 NA 91 60

mean (weight)

[1] NA

mean(weight, na.rm=TRUE)

[1] 75.4

18

5

Groupwise Descriptive Statistics

5.1 Properties of the Function doBy: : summaryBy

1. Install the package doBy
2. We will use the function summaryBy to create summary tables that contain exactly the information

which we want to see.

Syntax of doBy: : summaryBy

doBy: : summaryBy(var(s) ~ groupvar(s), data=..., FUN=...)

Notes:

e If there are more variables in the “formula”, use + to separate them.

e It is possible to use built-in functions as well as your own functions.

e The function length applied to any column of your data counts the observations.

o If there are more functions to apply groupwise to your data.frame, pack the function names in a
list, i.e. FUN=1ist (funl, fun2, ...).

e The function doBy: : summaryBy returns a handy data.frame!

5.2 Examples

Creating Sample Data

a b w N -

set.seed(123)

group <- rep(c("A","B"), 30)

treatment <- rep(c("groupl", "group2", "group3"), 10)
values <- rchisq(30, df=b)

mydata <- data.frame(group, treatment, values)

print (head(mydata,5))

group treatment values

A groupl 2.5718020
group2 8.0747086
group3 0.6485141
groupl 4.3740386
group2 10.3216603

= o= W

19

Example 1
Average of values by treatment:

summaryl <- doBy::summaryBy(values ~ treatment,
data=mydata, FUN=mean)
print (summaryl)

treatment values.mean
1 groupl 3.207749
2 group?2 5.004441
3 group3 4.296330

Example 2
Minimum, maximum and a frequency count of values by treatment and group:

summary2 <- doBy::summaryBy(values ~ treatment + group,
data=mydata, FUN=list(min, max, length))

change name of last column in summary table:

names (summary2) [6] <- "N"

print (summary2)

treatment group values.min values.max N

1 groupl A 1.2220565 3.208945 10
2 groupl B 1.3825887 6.184881 10
3 group2 A 1.4285405 10.321660 10
4 group2 B 0.6062728 8.500349 10
5 group3 A 0.6485141 8.211414 10
6 group3 B 3.1459618 5.409890 10

20

6 Graphs
6.1 Create Sample Data

x1 <- rep(c("A","B"), 50)

set.seed(111)

x2 <- sample(c("U","V","W"), 100, replace=TRUE)
set.seed(345)

x3 <- rnorm(100, 100, 15)

set.seed(567)

x4 <- rchisq(100, 3)

X <- data.frame(x1l, x2, x3, x4)

head (X, 3)

x1 x2 x3 x4
1 A V 88.22638 3.5291558
2 B W 95.80728 2.7358626
3 A W 97.57813 0.9237687

6.2 Colours

Here are some ways to specify colors in your plot:

1. Colour name (use colours() to display all available colors)
2. As an RGB or HEX value.
3. Using colour palettes from external libraries.

6.3 Saving Graphs to a File

pdf ("filename.pdf") # or png(...), jpeg(...),
graphics commands here
dev.off ()

If you want to save output from a statistical procedure, you can use

sink("filename.txt")
...statistics...
sink ()

21

6.4 Example: Histogram

head (X, 3)

x1 x2 x3 x4
1 A V 88.22638 3.5291558
2 B W 95.80728 2.7358626
3 A W 97.57813 0.9237687

hist (X$x3, col=rgb(1,0,0), main="My First Histogram", xlab="Values")

My First Histogram

15 20 25

Frequency

10

5
I

0
I

I I I I I
60 80 100 120 140

Values

22

6.5 Example: Pie Chart

head (X, 3)

x1 x2 x3 x4
1 A V 88.22638 3.5291558
2 B W 95.80728 2.7358626
3 A W 97.57813 0.9237687

mytab <- table(X$x2) # Create frequency table first!
pie(mytab, col=c("#fcba03", "#blfc03", "#037bfc"),
main="A Simple Pie Chart")

A Simple Pie Chart

23

6.6 Example: Grouped Boxplot

head (X, 3)

x1 x2 x3 x4
1 A V 88.22638 3.5291558
2 B W 95.80728 2.7358626
3 A W 97.57813 0.9237687

boxplot(x3 ~ x2, data=X, horizontal=TRUE,
col = c("cornflowerblue", "aquamarine"), cex.axis=0.9)

60 80 100 120 140

X3

Note that we have three categories but we only passed a vector with two different colours. In this case,
the vector is “recycled” here.

24

6.7 Example: Scatter Plot

head (X, 3)

x1 x2 x3 x4
1 A V 88.22638 3.5291558
2 B W 95.80728 2.7358626
3 A W 97.57813 0.9237687

plot (X$x3, X$x4, col="cornflowerblue", lwd=2, pch=19, xlab="x-axis",
ylab="y-axis", main="A Scatter Plot")

A Scatter Plot

o
= 7 ®
.2 Sz _]
(i .. ®) [)
o - I Fo X B
e © '5 i%ii;li: ® @
o - " .s'.
[[[[

I
60 80 100 120 140

X—axis

25

6.8 Example: Scatter Plot - ggplot2

head (X, 3)

x1 x2 x3 x4
1 A V 88.22638 3.5291558
2 B W 95.80728 2.7358626
3 A W 97.57813 0.9237687

library(ggplot2)

plt <- ggplot(X, aes(x=x3, y=x4, color=x2))
plt <- plt + geom_point(size=3)

plt <- plt + ggtitle("A ggplot2-plot")

plt

A ggplot2—plot
[

15-

60 80 100 120 140

26

X2

s < c

7 Functions and Control Flow by Example

7.1 Loops with for

for (i in 1:3)
{
print("Hello")

[1] "Hello"
[1] "Hello"
[1] "Hello"

7.2 Loops with repeat

n<-1
repeat
{
print(n)
if (n >= 5)
{
break
}
n<-n+1

}

(1]
(1]
(1]
(1]
[1]

a o W N =

27

7.3 Loops with repeat and break

n<-1
repeat {

if (n == 3) {
n<-n+1
next

}
print(n)

if (n >= 5) {
break

n<-n+1

[1]
[1]
(1]
(1]

g s N -

7.4 Loops with while

i<-1
while (i <= 3)
{
print ("Hello")
i<-1i+1
}
[1] "Hello"
[1] "Hello"

[1] "Hello"

7.5 Conditional Execution - Two Branches

x <= 2
if (x == 1) {
print("x is one")
} else {
print("x is something else")

}

[1] "x is something else"

7.6 Conditional Execution - More Branches

x <= 2

if (x == 1) {
print("x is one")

} else if (x == 2) {
print("x is two")

} else if (x == 3) {
print("x is three")

} else {
print("hm...")

}

[1] "x is two"

7.7 Conditional Execution - Using switch
x <= 2
message <- switch(x,
"Value equals 1",
"Value equals 2",
"Value equals 3",
"Value is something else"

)

cat (message)

Value equals 2

29

7.8 Functions

squareandroundme <- function(x)

{
result <- x * x
result <- round(result, 1)
return(result)

}

test <- squareandroundme(7.123)
test

[1] 50.7

8 Recommended Reading

o Kabacoff, R. (2011). R in Action. Data Analysis and Graphics with R. Shelter Island: Manning
Publications.

o Ligges, U. (2008). Programmieren mit R. (3. Auflage). Berlin/Heidelberg: Springer.

o Sauer, S. (2019). Moderne Datenanalyse mit R: Daten einlesen, aufbereiten, visualisieren, model-
lieren und kommunizieren. Wiesbaden: Springer.

o Wickham, H., Grolemund, G. (2016). R for Data Science. Import, tidy, transform, visualize and
model data. Sebastopol: O’Reilly Media.

30

	Getting Started
	The Most Important R Objects (Overview)
	Data Managment (data.frame Objects in Detail)
	Selected Functions
	Groupwise Descriptive Statistics
	Graphs
	Functions and Control Flow by Example
	Recommended Reading

